Telegram Group & Telegram Channel
Retentive Network [2023] - чёрная магия или мошенничество?

Все уже выучили идею Attention - берём матрицу Query (Nxd), Key^T (dxN), умножаем и применяем софтмакс - получаем распределение того, на какие токены смотрит каждый токен. Матрица получается NxN, и от этого квадратичного размера у всех подгорает. Потом результат умножается на Value (Nxd) и получается выход.

Некоторые внимательные товарищи заметили, что если убрать софтмакс, то вычисления почти не изменятся, но attention внезапно станет полностью линейной операцией - Q x K^T x V. В этом случае вычисление выхода можно пересобрать так, чтобы сложность стала линейной!

Грубо, в двух словах, мы провернули следующее:
В обычном трансформере мы считаем для каждого токена:
s_1(q_i x k_1) x v_1 + s_2(q_i x k_2) x v_2 + ...
Где s_1, s_2 - это несвязанные между собой применения софтмакса с учётом других query-токенов.

Убирая софтмаксы, мы получаем:
q_i x k_1 x v_1 + q_i x k_2 x v_2 + ...
Что позволяет вынести q_i за скобки:
q_i x (k_1 x v_1 + k_2 x v_2 + ...)

Но эта сумма в скобке-то для всех токенов одна и та же!
Мы можем посчитать её один раз и не умножать матрицы размером Nxd и dxN друг на друга. В реальности всё чуть сложнее - мы считаем эту сумму налету, двигаясь слева направо, чтобы воспроизвести логику Causal Mask - когда токены смотрят только на предыдущие токены.

Согласно экспериментам, производительность близка к трансформерной, но работает несоизмеримо быстрее. С другой стороны, в теории эта нелинейность может оказаться необходимой - по той же причине, по которой мы не можем убрать нелинейности из MLP. Но авторы компенсируют это втыканием нелинейностей в другом месте. Может быть, это и есть оптимальное решение - перенести линейности туда, где они не создают боттлнеков в расчётах.

Будем следить за развитием событий!

@knowledge_accumulator



tg-me.com/knowledge_accumulator/113
Create:
Last Update:

Retentive Network [2023] - чёрная магия или мошенничество?

Все уже выучили идею Attention - берём матрицу Query (Nxd), Key^T (dxN), умножаем и применяем софтмакс - получаем распределение того, на какие токены смотрит каждый токен. Матрица получается NxN, и от этого квадратичного размера у всех подгорает. Потом результат умножается на Value (Nxd) и получается выход.

Некоторые внимательные товарищи заметили, что если убрать софтмакс, то вычисления почти не изменятся, но attention внезапно станет полностью линейной операцией - Q x K^T x V. В этом случае вычисление выхода можно пересобрать так, чтобы сложность стала линейной!

Грубо, в двух словах, мы провернули следующее:
В обычном трансформере мы считаем для каждого токена:
s_1(q_i x k_1) x v_1 + s_2(q_i x k_2) x v_2 + ...
Где s_1, s_2 - это несвязанные между собой применения софтмакса с учётом других query-токенов.

Убирая софтмаксы, мы получаем:
q_i x k_1 x v_1 + q_i x k_2 x v_2 + ...
Что позволяет вынести q_i за скобки:
q_i x (k_1 x v_1 + k_2 x v_2 + ...)

Но эта сумма в скобке-то для всех токенов одна и та же!
Мы можем посчитать её один раз и не умножать матрицы размером Nxd и dxN друг на друга. В реальности всё чуть сложнее - мы считаем эту сумму налету, двигаясь слева направо, чтобы воспроизвести логику Causal Mask - когда токены смотрят только на предыдущие токены.

Согласно экспериментам, производительность близка к трансформерной, но работает несоизмеримо быстрее. С другой стороны, в теории эта нелинейность может оказаться необходимой - по той же причине, по которой мы не можем убрать нелинейности из MLP. Но авторы компенсируют это втыканием нелинейностей в другом месте. Может быть, это и есть оптимальное решение - перенести линейности туда, где они не создают боттлнеков в расчётах.

Будем следить за развитием событий!

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/113

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA